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Abstract: By using the fixed point theorem of cone expansion and compression of norm type and monotone iterative
technique, we study the following equation

(ϕp(u
′(t)))′ + λq(t)f(t, u(t)) = 0, t ∈ (0, 1),

and
(ϕp(u

′(t)))′ + q(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

subject to boundary conditions:

u′(0)− αu(ξ) = 0, u′(1) + βu(η) = 0,

where ϕp(s) = |s|p−2 · s, p > 1, the existence and iteration of positive solutions are proved. The interesting point
is the nonlinear term f is involved with the first-order derivative explicitly in section 3.

Key–Words: Positive solutions; p−Laplacian; Boundary value problem; Monotone iterative technique; Completely
continuous; Cone.

1 Introduction
In this paper, we study the existence of positive solu-
tions for the four-point boundary value problem (BVP
for short) with p−Laplacian

(ϕp(u
′(t)))′+λq(t)f(t, u(t)) = 0, t ∈ (0, 1), (1)

and

(ϕp(u
′(t)))′ + q(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

(2)
subject to boundary conditions:

u′(0)− αu(ξ) = 0, u′(1) + βu(η) = 0, (3)

where ϕp(s) = |s|p−2 · s, p > 1, (ϕp)
−1 = ϕq,

1
p +

1
q = 1, ξ, η ∈ (0, 1), λ > 0 and ξ < η, α ∈
(0, 1ξ ), β ∈ (0, 1

1−η ). By determining the range of λ
and using the fixed point theorem of cone expansion
and compression of norm type, we get the positive so-
lutions for (1), (3). Furthermore, by using monotone
iterative technique, we not only obtain the existence of
positive solutions for (2), (3), but also construct some
iterative schemes to find the solutions.

Equations of the above form occur in the s-
tudy of the n-dimensional p−Laplace equation, non-
Newtonian fluid theory and the turbulent flow of a gas
in a porous medium [11]. When the nonlinear term f
does not depend on the first-order derivative, Eq.(2)
has been studied extensively, and the existence and
multiplicity results are available in the literature [1-
4,13-18]. However, there are few papers dealing with
the iteration of positive solutions when the nonlinear
term f is involved in first-order derivative explicitly.
In [5], the authors considered the triple positive solu-
tion for two-point boundary value problems with one-
dimensional p−Laplacian

(ϕp(x
′(t)))′+q(t)f(t, x(t), x′(t)) = 0, t ∈ (0, 1),

x(0) = 0 = x(1)

or
x(0) = 0 = x′(1).

Bai [6] considered the following boundary value prob-
lem

(ϕp(x
′(t)))′+q(t)f(t, x(t), x′(t)) = 0, t ∈ (0, 1),
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together with one of the following boundary condi-
tions:

αϕp(x(0))− βϕp(x′(0)) = 0,

γϕp(x(1)) + δϕp(x
′(1)) = 0,

or
x(0)− g1(x′(0)) = 0,

x(1) + g2(x
′(1)) = 0,

by means of the Avery-Peterson fixed point theorem,
sufficient conditions are obtained that guarantee the
existence of at least three positive solutions. The so-
lution is nonnegative, if it has, under the condition f
is nonnegative, but this result can’t be generalized to
four-point BVP (1),(3) and BVP (2),(3). That is the
main difficulty to us. In our paper, we give a condition
α ∈ (0, 1ξ ), β ∈ (0, 1

1−η ) to overcome this difficulty.
Recently, in [7], using a fixed point theorem due to
Avery and Peterson, which we can refer the reader
to [10], Wang studied the following boundary value
problems

(ϕp(x
′(t)))′+q(t)f(t, x(t), x(t−1), x′(t)) = 0,

subject to one of the following two pairs of boundary
conditions:{

x(t) = ξ(t), −1 ≤ t ≤ 0,
x(1) = 0,{
x(t) = ξ(t), −1 ≤ t ≤ 0,
x′(1) = 0.

More recently, in [8], using the fixed point theorem
of cone expansion and compression of norm type,
we discussed the positive solution for the following
boundary value problems with sign changing nonlin-
earity

(ϕp(u
′))′ + f(t, u, u′) = 0, t ∈ [0, 1],

subject to the boundary value conditions:

u′(0) =
n∑
i=1

αiu
′(ξi), u(1) =

n∑
i=1

βiu(ξi).

We can see that all the results obtained in the
above papers are only the existence of positive solu-
tions under some conditions, but it is more useful to
us is give a way to find the solution. So in the sec-
tion 3 of this paper, we not only obtain the existence
of positive solutions for (2), (3), but also construct
some iterative schemes to find the solutions. To our
knowledge, this is the first paper to obtain iteration of
positive solutions to a four-point p-Laplacian bound-
ary value problems (2),(3). The emphasis here is that

the nonlinear term is involved explicitly with the first-
order derivative explicitly.

Throughout, it is assumed that:
(H1) f ∈ C([0, 1]× [0,+∞), (0,+∞)), λ > 0;
(H2) f ∈ C([0, 1] × [0,+∞) ×
(−∞,+∞), (0,+∞));
(H3) q(t) is a nonnegative measurable function
defined on (0, 1), q(t) ̸≡ 0 on any subinterval of
(0, 1). In addition,

∫ 1
0 q(t)dt < +∞;

(H4) ξ, η ∈ (0, 1) and ξ < η, α ∈ (0, 1ξ ), β ∈
(0, 1

1−η ).

2 Existence of Positive Solutions to
BVP (1),(3)

In this section, by determining the range of λ, and
using the fixed point theorem of cone expansion and
compression of norm type, we study the existence of
positive solutions for the four-point boundary value
problem with p−Laplacian

(ϕp(u
′(t)))′ + λq(t)f(t, u(t)) = 0, t ∈ (0, 1),

subject to boundary conditions:

u′(0)− αu(ξ) = 0, u′(1) + βu(η) = 0,

where ϕp(s) = |s|p−2 · s, p > 1, (ϕp)
−1 = ϕq,

1
p +

1
q = 1, λ > 0, ξ, η ∈ (0, 1) and ξ < η, α ∈
(0, 1ξ ), β ∈ (0, 1

1−η ).

Let X = C[0, 1] be endowed with the maximum
norm,

∥u∥ = max
0≤t≤1

|u(t)|.

From the fact (ϕp(u′(t)))′ = −λq(t)f(t, u(t)) ≤ 0,
we know that u is concave on [0, 1]. So, define the
cone K by

K = {u ∈ X| u(t) ≥ 0, u is concave on [0, 1]} ⊂ X.

For any x ∈ C[0, 1], x(t) ≥ 0, we consider the
following boundary value problem:

(ϕp(u
′(t)))′(t) + λq(t)f(t, x(t)) = 0, t ∈ (0, 1),

(4)
u′(0)− αu(ξ) = 0, u′(1) + βu(η) = 0. (5)

Lemma 1 For any x ∈ C[0, 1], x(t) ≥ 0, BVP
(4),(5) has a unique solution u(t) which can be ex-
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pressed in the form

u(t) =



1
αϕq(

∫ σ
0 λq(τ)f(τ, x(τ))dτ)

−
∫ ξ
0 ϕq(

∫ σ
s λq(τ)f(τ, x(τ))dτ)ds

+
∫ t
0 ϕq(

∫ σ
s λq(τ)f(τ, x(τ))dτ)ds,

0 ≤ t ≤ σ,
1
βϕq(

∫ 1
σ λq(τ)f(τ, x(τ))dτ)

−
∫ 1
η ϕq(

∫ s
σ λq(τ)f(τ, x(τ))dτ)ds

+
∫ 1
t ϕq(

∫ s
σ λq(τ)f(τ, x(τ))dτ)ds,

σ ≤ t ≤ 1,
(6)

where σ is the unique solution of Q(t) = υ1(t) −
υ2(t) = 0, 0 < t < 1, in which

υ1(t) =
1

α
ϕq

(∫ t

0
λq(τ)f(τ, x(τ))dτ

)

+

∫ t

ξ
ϕq

(∫ t

s
λq(τ)f(τ, x(τ))dτ

)
ds, (7)

υ2(t) =
1

β
ϕq

(∫ 1

t
λq(τ)f(τ, x(τ))dτ

)
+

∫ η

t
ϕq

(∫ s

t
λq(τ)f(τ, x(τ))dτ

)
ds. (8)

Proof: Firstly, we consider Q(t) is a strictly increas-
ing continuous function defined on [0, 1] three possi-
bilities.
(i) If ξ ≤ t ≤ η, it is obvious that Q(t) is a strictly
increasing continuous function.
(ii) If t < ξ, we have

Q(t) = 1
αϕq

(∫ t
0 λq(τ)f(τ, x(τ))dτ

)
+

∫ t
ξ ϕq

(∫ t
s λq(τ)f(τ, x(τ))dτ

)
ds

− 1
βϕq

(∫ 1
t λq(τ)f(τ, x(τ))dτ

)
−

∫ η
t ϕq (

∫ s
t λq(τ)f(τ, x(τ))dτ) ds

= 1
αϕq

(∫ t
0 λq(τ)f(τ, x(τ))dτ

)
− 1
βϕq

(∫ 1
t λq(τ)f(τ, x(τ))dτ

)
−

∫ η
ξ ϕq (

∫ s
t λq(τ)f(τ, x(τ))dτ) ds.

We can see that Q(t) is a strictly increasing continu-
ous function.
(iii) If t > η, we have

Q(t) = 1
αϕq

(∫ t
0 λq(τ)f(τ, x(τ))dτ

)
+

∫ t
ξ ϕq

(∫ t
s λq(τ)f(τ, x(τ))dτ

)
ds

− 1
βϕq

(∫ 1
t λq(τ)f(τ, x(τ))dτ

)
−

∫ η
t ϕq (

∫ s
t λq(τ)f(τ, x(τ))dτ) ds

= 1
αϕq

(∫ t
0 λq(τ)f(τ, x(τ))dτ

)
− 1
βϕq

(∫ 1
t λq(τ)f(τ, x(τ))dτ

)
+

∫ η
ξ ϕq

(∫ t
s λq(τ)f(τ, x(τ))dτ

)
ds.

We can see that Q(t) is a strictly increasing continu-
ous function. Q(0) = υ1(0) − υ2(0) < 0, Q(1) =
υ1(1) − υ2(1) > 0 implies a unique σ ∈ (0, 1) such
that Q(σ) = 0. So, u(t) is continuous at t = σ and
u(t) satisfies the equation (4),(5), therefore, u(t) is a
solution of BVP (4),(5).

Then we will prove that the solution u(t) of BVP
(4),(5) can be expressed in the form (6). We claim that
for the unique σ ∈ (0, 1) we have u′(σ) = 0. If not,
without loss of generality, we assume that u′(t) > 0.
This implies u(ξ) = 1

αu
′(0) > 0, u(η) = − 1

βu
′(1) <

0, which is a contradiction.
First, by integrating the equation of the problem (4)
on (σ, 1) we have

u′(t) = −ϕq(
∫ t

σ
λq(s)f(s, x(s))ds), (9)

thus,

u(1)− u(t) = −
∫ 1

t
ϕq(

∫ s

σ
λq(τ)f(τ, x(τ))dτ)ds),

i.e.,

u(t) = u(1) +

∫ 1

t
ϕq(

∫ s

σ
λq(τ)f(τ, x(τ))dτ)ds),

(10)
let t = 1 on (9), we have u′(1) =

−ϕq(
∫ 1
σ λq(s)f(s, x(s))ds). By the equation of

the boundary condition (5), we have

u(η) = 1
βϕq(

∫ 1
σ λq(s)f(s, x(s))ds)

= u(1) +
∫ 1
η ϕq(

∫ s
σ λq(τ)f(τ, x(τ))dτ)ds),

so we have

u(1) = 1
βϕq(

∫ 1
σ λq(s)f(s, x(s))ds)

−
∫ 1
η ϕq(

∫ s
σ λq(τ)f(τ, x(τ))dτ)ds),

(11)

by (10),(11), for t ∈ (σ, 1) we have

u(t) = 1
βϕq(

∫ 1
σ λq(τ)f(τ, x(τ))dτ)

−
∫ 1
η ϕq(

∫ s
σ λq(τ)f(τ, x(τ))dτ)ds

+
∫ 1
t ϕq(

∫ s
σ λq(τ)f(τ, x(τ))dτ)ds.

Similarly, for t ∈ (0, σ), by integrating the equation
of problem (4) on (0, σ), we have

u(t) = 1
αϕq(

∫ σ
0 λq(τ)f(τ, x(τ))dτ)

−
∫ ξ
0 ϕq(

∫ σ
s λq(τ)f(τ, x(τ))dτ)ds

+
∫ t
0 ϕq(

∫ σ
s λq(τ)f(τ, x(τ))dτ)ds.
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Define an operator T : K → X by

(Tu)(t) =



1
αϕq(

∫ σ
0 λq(τ)f(τ, u(τ))dτ)

−
∫ ξ
0 ϕq(

∫ σ
s λq(τ)f(τ, u(τ))dτ)ds

+
∫ t
0 ϕq(

∫ σ
s λq(τ)f(τ, u(τ))dτ)ds,

0 ≤ t ≤ σ,
1
βϕq(

∫ 1
σ λq(τ)f(τ, u(τ))dτ)

−
∫ 1
η ϕq(

∫ s
σ λq(τ)f(τ, u(τ))dτ)ds

+
∫ 1
t ϕq(

∫ s
σ λq(τ)f(τ, u(τ))dτ)ds,

σ ≤ t ≤ 1.
(12)

Lemma 2 Assume that (H1), (H3), (H4) hold. Then
T : K → K is completely continuous.

Proof: From the definition of T, we deduce that

(ϕp(Tu)
′(t))′ = −λq(t)f(t, u(t)) ≤ 0, t ∈ (0, 1),

(Tu)′(0)− α(Tu)(ξ) = 0,

(Tu)′(1) + β(Tu)(η) = 0,

and

(Tu)(ξ)− (Tu)(0) =
∫ ξ
0 (Tu)

′(s)ds
< ξ(Tu)′(0) = αξ(Tu)(ξ),

using (H3), we have (Tu)(ξ) − (Tu)(0) < (Tu)(ξ),
which implies that (Tu)(0) > 0. Similarly, we can
prove that (Tu)(1) > 0. This shows that T (K) ⊂ K,
and each fixed point of T is a solution of problem
(1),(3). We claim that T : K → K is completely con-
tinuous. The continuity of T is obvious since ϕq, f is
continuous. Now, we prove T is compact.

Let Ω ⊂ K be an bounded set. Then, there exists
R > 0, such that Ω ⊂ {u ∈ K|∥u∥ ≤ R}. For any
u ∈ Ω, we have

0 ≤ λ
∫ 1
0 q(r)f(r, x(r))dr

< λmaxs∈[0,1],u∈[0,R] f(s, u)
∫ 1
0 q(r)dr =:M.

From the definition of T, we get

|Tu| <
{

1
αϕq(M) + ϕq(M), 0 ≤ t ≤ σ,
1
βϕq(M) + ϕq(M), σ ≤ t ≤ 1.

On the other hand, for all u ∈ Ω, we find

|(Tu)′(t)| < ϕq(M) 0 ≤ t ≤ 1.

In view of the above two equations, we have TΩ is
uniformly bounded and equicontinuous, so we have
TΩ is compact on C[0, 1].
Therefore, we have T : K → K is completely con-
tinuous.

Lemma 3 ([9]) Suppose E is a real Banach space,
K ⊂ E is a cone, let Ω1,Ω2 be two bounded open
sets of E such that θ ∈ Ω1, Ω1 ⊂ Ω2. Let operator
T : K ∩ (Ω2\Ω1) → K be completely continuous.
Suppose that one of two conditions hold
(i) ∥Tx∥ ≤ ∥x∥, ∀x ∈ K ∩ ∂Ω1, ∥Tx∥ ≥
∥x∥, ∀x ∈ K ∩ ∂Ω2;
(ii) ∥Tx∥ ≥ ∥x∥, ∀x ∈ K ∩ ∂Ω1, ∥Tx∥ ≤
∥x∥, ∀x ∈ K ∩ ∂Ω2,
then T has at least one fixed point in K ∩ (Ω2\Ω1).

Lemma 4 ([12]) Let u ∈ K, θ ∈ (0, 12) is a constant,
then u(t) ≥ θ∥u∥, t ∈ [θ, 1− θ].

Lemma 5 Suppose that conditions (H1), (H3), (H4)
hold, then there exists a constant θ ∈ (0, 12) which
satisfies

0 <

∫ 1−θ

θ
q(t)dt <∞.

Furthermore, the function

A(t) =
∫ t
θ ϕq

(∫ t
s q(τ)dτ

)
ds

+
∫ 1−θ
t ϕq (

∫ s
t q(τ)dτ) ds, t ∈ [θ, 1− θ],

is positive continuous function on [θ, 1− θ], therefore
A(t) has minimum on [θ, 1 − θ]. Hence we suppose
that there exists L > 0 such that A(t) ≥ L.

Let

fβ = lim
|u|→β

inf min
t∈[0,1]

f(t, u)

(|u|)p−1 ,

fβ = lim
|u|→β

sup max
t∈[0,1]

f(t, u)

(|u|)p−1 , β = (0+ or∞).

Theorem 6 Suppose that conditions (H1), (H3), (H4)
hold, and let f∞ > 0, f0 <∞. Then problem (1),(3)
has at least one positive solution if

2p−1

θp−1f∞Lp−1
< λ <

1

f0Mp−1
, (13)

where M = 1
2 [

1
α + 1

β + 2]ϕq
(∫ 1

0 q(s)ds
)
.

Proof: From (13), there exists ε > 0, such that

2p−1

θp−1(f∞ − ε)Lp−1
≤ λ ≤ 1

(f0 + ε)Mp−1
(14)

(I) For fixed ε. In view of f0 <∞, there exists H1 >
0, such that for u : 0 < |u| ≤ H1, we have

f(t, u) ≤ (f0 + ε) (|u|)p−1 .
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Let Ω1 = {u ∈ X : ∥u∥ < H1} ,when u ∈ K∩∂Ω1,
we have

∥Tu∥ = (Tu)(σ)

= 1
2

[
1
αϕq (

∫ σ
0 λq(τ)f(τ, u(τ))dτ)

+
∫ σ
ξ ϕq (

∫ σ
s λq(τ)f(τ, u(τ))dτ) ds

+ 1
βϕq

(∫ 1
σ λq(τ)f(τ, u(τ))dτ

)
+

∫ η
σ ϕq (

∫ s
σ λq(τ)f(τ, u(τ))dτ) ds

]
≤ 1

2

[
1
αϕq

(∫ σ
0 λq(τ)(f

0 + ε)∥u∥p−1dτ
)

+
∫ σ
ξ ϕq

(∫ σ
s λq(τ)(f

0 + ε)∥u∥p−1dτ
)
ds

+ 1
βϕq

(∫ 1
σ λq(τ)(f

0 + ε)∥u∥p−1dτ
)

+
∫ η
σ ϕq

(∫ s
σ λq(τ)(f

0 + ε)∥u∥p−1dτ
)
ds

]
≤ 1

2

[
1
αλ

q−1(f0 + ε)q−1∥u∥ϕq (
∫ σ
0 q(τ)dτ)

+
∫ σ
ξ λ

q−1(f0 + ε)q−1∥u∥ϕq (
∫ σ
s q(τ)dτ) ds

+ 1
βλ

q−1(f0 + ε)q−1∥u∥ϕq
(∫ 1
σ q(τ)dτ

)
+

∫ η
σ λ

q−1(f0 + ε)q−1∥u∥ϕq (
∫ s
σ q(τ)dτ) ds

]
≤ 1

2 [
1
α+

1
β+2]ϕq

(∫ 1
0 q(τ)dτ

)
λq−1(f0+ε)q−1∥u∥

=Mλq−1(f0 + ε)q−1∥u∥
≤ ∥u∥,

therefore, we have ∥Tu∥ ≤ ∥u∥.
(II) In view of f∞ > 0, there exists H̄2 > 0, such

that for u : |u| ≥ H̄2, we have

f(t, u) ≥ (f∞ − ε) (|u|)p−1 .

Let H2 = max
{
H1
θ ,

H̄2
θ

}
, Ω2 =

{u ∈ X : ∥u∥ < H2} . By lemma 4, we have
when u ∈ K ∩ ∂Ω2, we have

θ∥u∥ ≤ |u| ≤ ∥u∥, t ∈ [θ, 1− θ].

We consider three possibilities.
(i) If σ ∈ [θ, 1−θ], then for u ∈ K ∩∂Ω2, by Lemma
5, we have

2∥Tu∥ = 2(Tu)(σ)
≥

∫ σ
0 ϕq (

∫ σ
s λq(τ)f(τ, u(τ))dτ) ds

+
∫ 1
σ ϕq (

∫ s
σ λq(τ)f(τ, u(τ))dτ) ds

≥
∫ σ
θ ϕq (

∫ σ
s λq(τ)f(τ, u(τ))dτ) ds

+
∫ 1−θ
σ ϕq (

∫ s
σ λq(τ)f(τ, u(τ))dτ) ds

≥
∫ σ
θ ϕq

(∫ σ
s λq(τ)(f∞ − ε)θp−1∥u∥p−1dτ

)
ds

+
∫ 1−θ
σ ϕq

(∫ s
σ λq(τ)(f∞ − ε)θp−1∥u∥p−1dτ

)
ds

= λq−1(f∞ − ε)q−1θ∥u∥[
∫ σ
θ ϕq (

∫ σ
s q(τ)dτ) ds

+
∫ 1−θ
σ ϕq (

∫ s
σ q(τ)dτ) ds]

= λq−1(f∞ − ε)q−1θA(θ)∥u∥
≥ λq−1(f∞ − ε)q−1θL∥u∥ ≥ 2∥u∥.

(ii) If σ ∈ (1−θ, 1), then for u ∈ K∩∂Ω2, by Lemma
5, we have

∥Tu∥ = (Tu)(σ)
≥

∫ σ
0 ϕq (

∫ σ
s λq(τ)f(τ, u(τ))dτ) ds

≥
∫ 1−θ
θ ϕq

(∫ 1−θ
s λq(τ)f(τ, u(τ))dτ

)
ds

≥
∫ 1−θ
θ ϕq

(∫ 1−θ
s λq(τ)(f∞ − ε)θp−1∥u∥p−1dτ

)
ds

≥ λq−1(f∞ − ε)q−1θ∥u∥[
∫ 1−θ
θ ϕq

(∫ 1−θ
s q(τ)dτ

)
ds

= λq−1(f∞ − ε)q−1θ∥u∥A(1− θ)
≥ λq−1(f∞ − ε)q−1θ∥u∥L ≥ ∥u∥.

(iii) If σ ∈ (0, θ), then for u ∈ K ∩ ∂Ω2, by Lemma
5, we have

∥Tu∥ = (Tu)(σ)

≥
∫ 1
σ ϕq (

∫ s
σ λq(τ)f(τ, u(τ))dτ) ds

≥
∫ 1−θ
θ ϕq (

∫ s
θ λq(τ)f(τ, u(τ))dτ) ds

≥
∫ 1−θ
θ ϕq

(∫ s
θ λq(τ)(f∞ − ε)θp−1∥u∥p−1dτ

)
ds

≥ λq−1(f∞ − ε)q−1θ∥u∥[
∫ 1−θ
θ ϕq (

∫ s
θ q(τ)dτ) ds

= λq−1(f∞ − ε)q−1θ∥u∥A(θ)
≥ λq−1(f∞ − ε)q−1θ∥u∥L ≥ ∥u∥.

Therefore, for any u ∈ K ∩∂Ω2, we all have ∥Tu∥ ≥
∥u∥.

By Lemma 3, we have operator T has a fixed
point u ∈ K ∩ (Ω̄2 \ Ω1), and H1 ≤ ∥u∥ ≤ H2,
so u is a positive solution of BVP (1), (3).

Theorem 7 Suppose that conditions (H1), (H3), (H4)
hold, and let f0 > 0, f∞ <∞. Then problem (1),(3)
has at least one positive solution if

2p−1

θp−1f0Lp−1
< λ <

1

f∞Mp−1
. (15)

Proof: From (15), there exists ε > 0, such that

2p−1

θp−1(f0 − ε)Lp−1
≤ λ ≤ 1

(f∞ + ε)Mp−1
. (16)

(I) For fixed ε. In view of f0 > 0, there existsH1 > 0,
such that for u : 0 < |u| ≤ H1, we have

f(t, u) ≥ (f0 − ε) (|u|)p−1 .

Let Ω1 = {u ∈ X : ∥u∥ < H1} ,when u ∈ K∩∂Ω1,
we have

θ∥u∥ ≤ |u| ≤ ∥u∥, t ∈ [θ, 1− θ].

We consider three possibilities.
(i) If σ ∈ [θ, 1−θ], then for u ∈ K ∩∂Ω1, by Lemma
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5, we have

2∥Tu∥ = 2(Tu)(σ)
≥

∫ σ
0 ϕq (

∫ σ
s λq(τ)f(τ, u(τ))dτ) ds

+
∫ 1
σ ϕq (

∫ s
σ λq(τ)f(τ, u(τ))dτ) ds

≥
∫ σ
θ ϕq (

∫ σ
s λq(τ)f(τ, u(τ))dτ) ds

+
∫ 1−θ
σ ϕq (

∫ s
σ λq(τ)f(τ, u(τ))dτ) ds

≥
∫ σ
θ ϕq

(∫ σ
s λq(τ)(f0 − ε)θp−1∥u∥p−1dτ

)
ds

+
∫ 1−θ
σ ϕq

(∫ s
σ λq(τ)(f0 − ε)θp−1∥u∥p−1dτ

)
ds

= λq−1(f0 − ε)q−1θ∥u∥[
∫ σ
θ ϕq (

∫ σ
s q(τ)dτ) ds

+
∫ 1−θ
σ ϕq (

∫ s
σ q(τ)dτ) ds]

≥ λq−1(f0 − ε)q−1θA(θ)∥u∥
≥ λq−1(f0 − ε)q−1θL∥u∥ ≥ 2∥u∥.

(ii) If σ ∈ (1−θ, 1), then for u ∈ K∩∂Ω1, by Lemma
5, we have

∥Tu∥ = (Tu)(σ)
≥

∫ σ
0 ϕq (

∫ σ
s λq(τ)f(τ, u(τ))dτ) ds

≥
∫ 1−θ
θ ϕq

(∫ 1−θ
s λq(τ)f(τ, u(τ))dτ

)
ds

≥
∫ 1−θ
θ ϕq

(∫ 1−θ
s λq(τ)(f0 − ε)θp−1∥u∥p−1dτ

)
ds

≥ λq−1(f0 − ε)q−1θ∥u∥[
∫ 1−θ
θ ϕq

(∫ 1−θ
s q(τ)dτ

)
ds

= λq−1(f0 − ε)q−1θ∥u∥A(1− θ)
≥ λq−1(f0 − ε)q−1θ∥u∥L ≥ ∥u∥.

(iii) If σ ∈ (0, θ), then for u ∈ K ∩ ∂Ω1, by Lemma
5, we have

∥Tu∥ = (Tu)(σ)

≥
∫ 1
σ ϕq (

∫ s
σ λq(τ)f(τ, u(τ))dτ) ds

≥
∫ 1−θ
θ ϕq (

∫ s
θ λq(τ)f(τ, u(τ))dτ) ds

≥
∫ 1−θ
θ ϕq

(∫ s
θ λq(τ)(f0 − ε)θp−1∥u∥p−1dτ

)
ds

≥ λq−1(f0 − ε)q−1θ∥u∥[
∫ 1−θ
θ ϕq (

∫ s
θ q(τ)dτ) ds

= λq−1(f0 − ε)q−1θ∥u∥A(θ)
≥ λq−1(f0 − ε)q−1θ∥u∥L ≥ ∥u∥.

Therefore, for any u ∈ K ∩∂Ω1, we all have ∥Tu∥ ≥
∥u∥.

(II) In view of f∞ < ∞, there exists H̄2 > 0,
such that for u : |u| ≥ H̄2, we have

f(t, u) ≤ (f∞ + ε) (|u|)p−1 .

Here there are two cases to consider, namely, where f
is bounded and where f is unbounded.

Case 1. Suppose f is bounded. There
exists Λ > 0, such that f(t, u) ≤ Λp−1.

Let H2 = max
{
H1
θ , λ

q−1ΛM
}
, Ω2 =

{u ∈ X : ∥u∥ < H2} , when u ∈ K ∩ ∂Ω2,

we have

∥Tu∥ = (Tu)(σ) =

1
2

[
1
αϕq (

∫ σ
0 λq(τ)f(τ, u(τ))dτ)

+
∫ σ
ξ ϕq (

∫ σ
s λq(τ)f(τ, u(τ))dτ) ds

+ 1
βϕq

(∫ 1
σ λq(τ)f(τ, u(τ))dτ

)
+

∫ η
σ ϕq (

∫ s
σ λq(τ)f(τ, u(τ))dτ) ds

]
≤ 1

2

[
1
αϕq

(∫ σ
0 λq(τ)Λ

p−1dτ
)

+
∫ σ
ξ ϕq

(∫ σ
s λq(τ)Λ

p−1dτ
}
ds

+ 1
βϕq

(∫ 1
σ λq(τ)Λ

p−1dτ
)

+
∫ η
σ ϕq

(∫ s
σ λq(τ)Λ

p−1dτ
)
ds

]
≤ 1

2

[
1
αλ

q−1Λϕq (
∫ σ
0 q(τ)dτ)

+
∫ σ
ξ λ

q−1Λϕq (
∫ σ
s q(τ)dτ) ds

+ 1
βλ

q−1Λϕq
(∫ 1
σ q(τ)dτ

)
+

∫ η
σ λ

q−1Λϕq (
∫ s
σ q(τ)dτ) ds

]
≤ 1

2 [
1
α + 1

β + 2]ϕq
(∫ 1

0 q(τ)dτ
)
λq−1Λ

=Mλq−1Λ ≤ H2 = ∥u∥.

Case 2. Suppose f is unbounded. Let H2 >
max

{
H1, H̄2

}
, when t ∈ [0, 1], and 0 < |u| ≤

H2, we have f(t, u(t)) ≤ f(t,H2). Let Ω2 =
{u ∈ X : ∥u∥ < H2} , when u ∈ K ∩ ∂Ω2, we have

∥Tu∥ = (Tu)(σ)

= 1
2

[
1
αϕq (

∫ σ
0 λq(τ)f(τ, u(τ))dτ)

+
∫ σ
ξ ϕq (

∫ σ
s λq(τ)f(τ, u(τ))dτ) ds

+ 1
βϕq

(∫ 1
σ λq(τ)f(τ, u(τ))dτ

)
+

∫ η
σ ϕq (

∫ s
σ λq(τ)f(τ, u(τ))dτ) ds

]
≤ 1

2

[
1
αϕq (

∫ σ
0 λq(τ)f(τ,H2)dτ)

+
∫ σ
ξ ϕq (

∫ σ
s λq(τ)f(τ,H2)dτ) ds

+ 1
βϕq

(∫ 1
σ λq(τ)f(τ,H2)dτ

)
+

∫ η
σ ϕq (

∫ s
σ λq(τ)f(τ,H2)dτ) ds

]
≤ 1

2

[
1
αϕq

(∫ σ
0 λq(τ)(f

∞ + ε)(H2)
p−1dτ

)
+

∫ σ
ξ ϕq

(∫ σ
s λq(τ)(f

∞ + ε)(H2)
p−1dτ

)
ds

+ 1
βϕq

(∫ 1
σ λq(τ)(f

∞ + ε)(H2)
p−1dτ

)
+

∫ η
σ ϕq

(∫ s
σ λq(τ)(f

∞ + ε)(H2)
p−1dτ

)
ds

]
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≤ 1
2

[
1
αλ

q−1(f∞ + ε)q−1(H2)ϕq
(∫ 1

0 q(τ)dτ
)

+λq−1(f∞ + ε)q−1(H2)ϕq
(∫ 1

0 q(τ)dτ
)

+ 1
βλ

q−1(f∞ + ε)q−1(H2)ϕq
(∫ 1

0 q(τ)dτ
)

+λq−1(f∞ + ε)q−1(H2)ϕq
(∫ 1

0 q(τ)dτ
)]

= λq−1(f∞ + ε)q−1(H2)
1
2 [

1
α + 1

β + 2]ϕq
(∫ 1

0 q(τ)dτ
)

= λq−1(f∞ + ε)q−1(H2)M
≤ H2 = ∥u∥.

Therefore, we have ∥Tu∥ ≤ ∥u∥.
By Lemma 3, we have operator T has a fixed

point u ∈ K ∩ (Ω̄2 \ Ω1), and H1 ≤ ∥u∥ ≤ H2,
so u is a positive solution of BVP (1), (3).

3 Existence and Iteration of Positive
Solutions to BVP (2),(3)

LetX = C1[0, 1] be endowed with the maximum nor-
m,

∥u∥ = max

{
max
0≤t≤1

|u(t)|, max
0≤t≤1

|u′(t)|
}
.

From the fact (ϕp(u′(t)))′ = −q(t)f(t, u(t), u′(t)) ≤
0, we know that u is concave on [0, 1]. So, define the
cone K by

K = {u ∈ X| u(t) ≥ 0, u is concave on [0, 1]} ⊂ X.

For any x ∈ C1[0, 1], x(t) ≥ 0, we consider the
following boundary value problem:

(ϕp(u
′(t)))′(t)+q(t)f(t, x(t), x′(t)) = 0, t ∈ (0, 1),

(17)
u′(0)− αu(ξ) = 0, u′(1) + βu(η) = 0. (18)

Lemma 8 For any x ∈ C1[0, 1], x(t) ≥ 0, BVP
(17),(18) has a unique solution u(t) which can be ex-
pressed in the form

u(t) =



1
αϕq(

∫ σ
0 q(τ)f(τ, x(τ), x

′(τ))dτ)

−
∫ ξ
0 ϕq(

∫ σ
s q(τ)f(τ, x(τ), x

′(τ))dτ)ds

+
∫ t
0 ϕq(

∫ σ
s q(τ)f(τ, x(τ), x

′(τ))dτ)ds,
0 ≤ t ≤ σ,

1
βϕq(

∫ 1
σ q(τ)f(τ, x(τ), x

′(τ))dτ)

−
∫ 1
η ϕq(

∫ s
σ q(τ)f(τ, x(τ), x

′(τ))dτ)ds

+
∫ 1
t ϕq(

∫ s
σ q(τ)f(τ, x(τ), x

′(τ))dτ)ds,
σ ≤ t ≤ 1,

(19)
where σ is the unique solution of Q(t) = υ1(t) −
υ2(t) = 0, 0 < t < 1, in which

υ1(t) =
1

α
ϕq

(∫ t

0
q(τ)f(τ, x(τ), x′(τ))dτ

)

+

∫ t

ξ
ϕq

(∫ t

s
q(τ)f(τ, x(τ), x′(τ))dτ

)
ds, (20)

υ2(t) =
1

β
ϕq

(∫ 1

t
q(τ)f(τ, x(τ), x′(τ))dτ

)
+

∫ η

t
ϕq

(∫ s

t
q(τ)f(τ, x(τ), x′(τ))dτ

)
ds. (21)

Proof: The proof of this Lemma is similar to Lemma
1, so we omit here.

Define an operator T̄ : K → X by

(T̄ u)(t) =



1
αϕq(

∫ σ
0 q(τ)f(τ, u(τ), u

′(τ))dτ)

−
∫ ξ
0 ϕq(

∫ σ
s q(τ)f(τ, u(τ), u

′(τ))dτ)ds

+
∫ t
0 ϕq(

∫ σ
s q(τ)f(τ, u(τ), u

′(τ))dτ)ds,
0 ≤ t ≤ σ,

1
βϕq(

∫ 1
σ q(τ)f(τ, u(τ), u

′(τ))dτ)

−
∫ 1
η ϕq(

∫ s
σ q(τ)f(τ, u(τ), u

′(τ))dτ)ds

+
∫ 1
t ϕq(

∫ s
σ q(τ)f(τ, u(τ), u

′(τ))dτ)ds,
σ ≤ t ≤ 1.

(22)

Lemma 9 Assume that (H2) − (H4) hold. Then T̄ :
K → K is completely continuous.

Proof: From the definition of T̄ , we deduce that

(ϕp(T̄ u)
′(t))′ = −q(t)f(t, u(t), u′(t)) ≤ 0,

t ∈ (0, 1),

(T̄ u)′(0)− α(T̄ u)(ξ) = 0,

(T̄ u)′(1) + β(T̄ u)(η) = 0,

and

(T̄ u)(ξ)− (T̄ u)(0) =
∫ ξ
0 (T̄ u)

′(s)ds < ξ(T̄ u)′(0)
= αξ(T̄ u)(ξ),

using (H3), we have (T̄ u)(ξ) − (T̄ u)(0) < (T̄ u)(ξ),
which implies that (T̄ u)(0) > 0. Similarly, we can
prove that (T̄ u)(1) > 0. This shows that T̄ (K) ⊂ K,
and each fixed point of T̄ is a solution of problem
(2),(3). We claim that T̄ : K → K is completely con-
tinuous. The continuity of T̄ is obvious since ϕq, f is
continuous. Now, we prove T̄ is compact.

Let Ω ⊂ K be an bounded set. Then, there exists
R > 0, such that Ω ⊂ {u ∈ K|∥u∥ ≤ R}. For any
u ∈ Ω, we have

0 ≤
∫ 1
0 q(r)f(r, u(r), u

′(r))dr <

maxs∈[0,1],u∈[0,R],v∈[−R,R] f(s, u, v)
∫ 1
0 q(r)dr

=:M.

From the definition of T̄ , we get

|T̄ u| <
{

1
αϕq(M) + ϕq(M), 0 ≤ t ≤ σ,
1
βϕq(M) + ϕq(M), σ ≤ t ≤ 1.
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On the other hand, for all u ∈ Ω, we find

|(T̄ u)′(t)| < ϕq(M) 0 ≤ t ≤ 1.

In view of the above two equations, we have T̄Ω is
uniformly bounded and equicontinuous, so we have
T̄Ω is compact on C0[0, 1].

From (22), we know for ∀ε > 0, ∃δ > 0, such
that when |t1 − t2| < δ, we have

|ϕp(T̄ u)′(t1)− ϕp(T̄ u)′(t2)|
=

∫ t2
t1
q(r)f(r, u(r), u′(r))

< ε.

So ϕp(T̄Ω)
′ is uniformly bounded and equicontinu-

ous, so ϕp(T̄Ω)′ is compact on C0[0, 1], therefore we
have (T̄Ω)′ is compact on C0[0, 1].
The Arzela-Ascoli theorem guarantees that T̄Ω is rel-
atively compact on C1[0, 1], which means T̄ is com-
pact. Therefore, we have T̄ : K → K is completely
continuous.

Let

A = max

{
ϕq(

∫ 1
0 q(τ)dτ)(1 +

1
α),

ϕq(
∫ 1
0 q(τ)dτ)(1 +

1
β )

}
We will prove the following result.

Theorem 10 Assume that (H2)−(H4) hold, and there
exists a > 0, such that

(C1) f(t, x1, y1) ≤ f(t, x2, y2),
for any 0 ≤ t ≤ 1, 0 ≤ x1 ≤ x2 ≤ a,
0 ≤ |y1| ≤ |y2| ≤ a;

(C2) max
0≤t≤1

f(t, a, a) ≤ ϕp
(
a
A

)
;

(C3) f(t, 0, 0) ̸≡ 0 for 0 ≤ t ≤ 1.

Then the boundary value problem (2),(3) has one pos-
itive solution ω∗ ∈ K such that 0 < ω∗ ≤ a, 0 <
|(ω∗)′| ≤ a and lim

n→∞
T̄nω0 = ω∗, lim

n→∞
(T̄nω0)

′ =

(ω∗)′where

ω0(t) = a
max

{
( 1α + t), ( 1β + (1− t))

}
max

{
( 1α + 1), ( 1β + 1)

} , 0 ≤ t ≤ 1.

Proof: We denote

Ka = {u ∈ K| ∥u∥ < a} ,

and
Ka = {u ∈ K| ∥u∥ ≤ a} .

We first prove T̄ : Ka → Ka. Let u ∈ Ka, then

0 ≤ u(t) ≤ max
0≤t≤1

|u(t)| ≤ ∥u∥ ≤ a, (23)

|u′(t)| ≤ max
0≤t≤1

|u′(t)| ≤ ∥u∥ ≤ a. (24)

So, by assumptions (C1) and (C2), we have

0 ≤ f(t, u(t), u′(t)) ≤ f(t, a, a) ≤ max
0≤t≤1

f(t, a, a)

≤ ϕp
(
a
A

)
, 0 ≤ t ≤ 1.

(25)
In fact,

∥T̄ u∥ = max

{
max
0≤t≤1

|(T̄ u)(t)|, max
0≤t≤1

|(T̄ u)′(t)|
}

= max
{
(T̄ u)(σ), (T̄ u)′(0), −(T̄ u)′(1)

}
.

Therefore, for u ∈ Ka, we have

(T̄ u)(σ) = 1
αϕq(

∫ σ
0 q(τ)f(τ, u(τ), u

′(τ))dτ)
+

∫ σ
ξ ϕq(

∫ σ
s q(τ)f(τ, u(τ), u

′(τ))dτ)ds,

= 1
βϕq(

∫ 1
σ q(τ)f(τ, u(τ), u

′(τ))dτ)

+
∫ η
σ ϕq(

∫ s
σ q(τ)f(τ, u(τ), u

′(τ))dτ)ds,

≤ a
A max

{
ϕq(

∫ 1
0 q(τ)dτ)(1 +

1
α),

ϕq(
∫ 1
0 q(τ)dτ)(1 +

1
β )

}
= a,

(T̄ u)′(0) = ϕq (
∫ σ
0 q(τ)f(τ, u(τ), u

′(τ))dτ)

≤ a
Aϕq

(∫ 1
0 q(τ)dτ

)
≤ a,

−(T̄ u)′(1) = ϕq
(∫ 1
σ q(τ)f(τ, u(τ), u

′(τ))dτ
)

≤ a
Aϕq

(∫ 1
0 q(τ)dτ

)
≤ a.

Thus, we obtain that

∥T̄ u∥ ≤ a.

This means T̄ : Ka → Ka. Let

ω0(t) = a
max

{
( 1α + t), ( 1β + (1− t))

}
max

{
( 1α + 1), ( 1β + 1)

} ,

0 ≤ t ≤ 1,

Φ = ϕq(

∫ 1

0
q(τ)dτ)(

1

α
+ t),

Ψ = ϕq(

∫ 1

0
q(τ)dτ)(

1

β
+ (1− t)),

Γ = ϕq(

∫ 1

0
q(τ)dτ)(1 +

1

α
),
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Υ = ϕq(

∫ 1

0
q(τ)dτ)(1 +

1

β
).

Let ω1 = T̄ ω0, then ω1 ∈ Ka, we denote

ωn+1 = T̄ ωn = T̄n+1ω0, (n = 0, 1, 2, · · ·). (26)

Since T̄ : Ka → Ka, we have ωn ∈ T̄Ka ⊆
Ka, n = 0, 1, 2, · · · .
Since T̄ is completely continuous, {ωn}∞n=0 is a se-
quentially compact set,

ω1(t) = T̄ ω0(t)

=



1
αϕq(

∫ σ
0 q(τ)f(τ, ω0(τ), ω

′
0(τ))dτ)

+
∫ t
ξ ϕq(

∫ σ
s q(τ)f(τ, ω0(τ), ω

′
0(τ))dτ)ds,

0 ≤ t ≤ σ
1
βϕq(

∫ 1
σ q(τ)f(τ, ω0(τ), ω

′
0(τ))dτ)

+
∫ η
t ϕq(

∫ s
σ q(τ)f(τ, ω0(τ), ω

′
0(τ))dτ)ds,

σ ≤ t ≤ 1

≤ a
A max

{
1
αϕq(

∫ 1
0 q(τ)dτ)+

∫ t
ξ ϕq(

∫ 1
s q(τ)dτ)ds,

1
βϕq(

∫ 1
0 q(τ)dτ) +

∫ η
t ϕq(

∫ s
0 q(τ)dτ)ds

}
≤ amax {Φ, Ψ}

max {Γ, Υ}
= ω0(t),

|ω′
1(t)| = |(T̄ ω0)

′(t)|

=


|ϕq(

∫ σ
t q(τ)f(τ, ω0(τ), ω

′
0(τ))dτ)|,

0 ≤ t ≤ σ,
| − ϕq(

∫ t
σ q(τ)f(τ, ω0(τ), ω

′
0(τ))dτ)|,

σ ≤ t ≤ 1

≤ a
Aϕq(

∫ 1
0 q(τ)dτ)

= a
ϕq(

∫ 1

0
q(τ)dτ)

max

{
ϕq(

∫ 1

0
q(τ)dτ)(1+ 1

α
),ϕq(

∫ 1

0
q(τ)dτ)(1+ 1

β
)

}
= |ω′

0(t)|,

then we obtain

ω1(t) ≤ ω0(t), |ω′
1(t)| ≤ |ω′

0(t), 0 ≤ t ≤ 1.

So,

ω2(t) = T̄ ω1(t) ≤ T̄ ω0(t) = ω1(t), 0 ≤ t ≤ 1,

|ω′
2(t)| = |(T̄ ω1)

′(t)| ≤ |(T̄ ω0)
′(t)| = |ω′

1(t),

0 ≤ t ≤ 1.

Hence by induction, we have

ωn+1 ≤ ωn, |ω′
n+1(t)| ≤ |ω′

n(t)|,

0 ≤ t ≤ 1, n = 1, 2, · · · .

Thus, there exists ω∗ ∈ Ka such that ωn → ω∗. Let-
ting n → ∞ in (26), we obtain T̄ ω∗ = ω∗ since T is
continuous.

If f(t, 0, 0) ̸≡ 0, 0 ≤ t ≤ 1, then the zero
function is not the solution of (2),(3). Therefore, ω∗ is
a positive solution of (2),(3).

Corollary 11 Assume (H2)− (H4), (C1), (C3)
hold, and there exist 0 < a1 < a2 < · · · < an, such
that

(C ′
2) max

0≤t≤1
f(t, ak, ak) ≤ ϕp(

ak
A
), k = 1, 2, · · · , n,

(particularly, limr→+∞ max
0≤t≤1

f(t, r, ak) = 0,

k = 1, 2, · · · , n).
Then the boundary value problem (2),(3) has n pos-
itive solutions ω∗

k ∈ K such that 0 < ω∗
k ≤

ak, 0 < |(ω∗
k)

′| ≤ ak and lim
n→∞

T̄nωk0 =

ω∗
k, lim

n→∞
(T̄nωk0)

′ = (ω∗
k)

′where

ωk0(t) = ak
max

{
( 1α + t), ( 1β + (1− t))

}
max

{
( 1α + 1), ( 1β + 1)

} ,

0 ≤ t ≤ 1.

Example: Consider the following boundary value
problem

(|u′|−
1
2u′)′ + f(t, u(t), u′(t)) = 0, 0 < t < 1,

(27)

u′(0)− u(1
3
) = 0, u′(1) + u(

1

2
) = 0, (28)

where

f(t, x, y) = −t2 + t+
1

4
x+

1

8
y2.

We notice that p = 3
2 , q(t) = 1, α = β = 1, ξ =

1
3 , η = 1

2 .
If we take a = 1, then we have A = 2.
Furthermore, we get f(t, x, y) satisfies:

(C1) f(t, x1, y1) ≤ f(t, x2, y2), for any
0 ≤ t ≤ 1, 0 ≤ x1 ≤ x2 ≤ 1,
0 ≤ |y1| ≤ |y2| ≤ 1;

(C2) max
0≤t≤1

f(t, a, a) = f(12 , 1, 1) < ϕ 3
2

(
a
A

)
=

√
2
2 ;

(C3) f(t, 0, 0) ̸≡ 0 for 0 ≤ t ≤ 1.

Then by Theorem 10, the boundary value problem
(27),(28) has one positive solution ω∗ ∈ K such that
0 < ω∗ ≤ 1, 0 < |(ω∗)′| ≤ 1 and lim

n→∞
T̄nω0 =

ω∗, lim
n→∞

(T̄nω0)
′ = (ω∗)′.

WSEAS TRANSACTIONS on MATHEMATICS Dehong Ji, Weigao Ge

E-ISSN: 2224-2880 804 Issue 9, Volume 11, September 2012



4 Conclusion
In this paper, firstly, by determining the range of λ,
we obtain at least one positive solution for the BVP
(1), (3) using the fixed point theorem of cone expan-
sion and compression of norm type. Secondly, we use
monotone iterative technique to study problems (2),
(3), we not only obtain the existence of positive so-
lutions for (2), (3), but also construct some iterative
schemes to find the solutions. To our knowledge, this
is the first paper to obtain iteration of positive solu-
tions to a four-point p-Laplacian boundary value prob-
lems (1),(3) and (2), (3). The solution is nonnegative,
if it has, under the condition f is nonnegative, but this
result can’t be generalized to four-point BVP (1),(3)
and BVP (2),(3). That is the main difficulty to us.
The novelty of this paper is that we give a condition
α ∈ (0, 1ξ ), β ∈ (0, 1

1−η ) to overcome this difficul-
ty. To the author’s knowledge, this is the first paper
can be found in the literature on the existence of pos-
itive solutions and iteration of positive solutions to a
four-point p-Laplacian boundary value problems.
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